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Abstract
The ubiquity of music across cultures as a means of emotional expression, and its proposed evo-

lutionary relation to speech, motivated researchers to attempt a characterization of its neural

representation. Several neuroimaging studies have reported that specific regions in the anterior

temporal lobe respond more strongly to music than to other auditory stimuli, including spoken

voice. Nonetheless, because most studies have employed instrumental music, which has impor-

tant acoustic distinctions from human voice, questions still exist as to the specificity of the

observed “music-preferred” areas. Here, we sought to address this issue by testing 24 healthy

young adults with fast, high-resolution fMRI, to record neural responses to a large and varied

set of musical stimuli, which, critically, included a capella singing, as well as purely instrumental

excerpts. Our results confirmed that music; vocal or instrumental, preferentially engaged regions

in the superior STG, particularly in the anterior planum polare, bilaterally. In contrast, human

voice, either spoken or sung, activated more strongly a large area along the superior temporal

sulcus. Findings were consistent between univariate and multivariate analyses, as well as with

the use of a “silent” sparse acquisition sequence that minimizes any potential influence of scan-

ner noise on the resulting activations. Activity in music-preferred regions could not be

accounted for by any basic acoustic parameter tested, suggesting these areas integrate, likely in

a nonlinear fashion, a combination of acoustic attributes that, together, result in the perceived

musicality of the stimuli, consistent with proposed hierarchical processing of complex auditory

information within the temporal lobes.

KEYWORDS

fMRI, music; speech; singing, neural overlap, neural preference, pulse clarity

1 | INTRODUCTION

The syntactic parallels that music has with speech and its comparable

use for communicating emotional states have contributed to a long-

standing debate over a possible common evolutionary origin

(Besson & Schön, 2001). Studies highlighting their similarities, at

behavioral and neural levels, have encouraged the development of

several theories attempting to make sense of the close relationship

that music has to speech (for a recent review, see Peretz, Vuvan,

Lagrois, & Armony, 2015). For example, Brown (2000) proposed the

“musilanguage” hypothesis, stating that music and language have

evolved from the same origin and over time diverged, adopting their

own unique domain-specific attributes. Others hypothesized an

invasion of music into the language module (i.e., a “functionally spe-

cialized cognitive system”; Fodor, 1983) now acting as an adapted by-

product (Pinker, 1997) that has since stabilized across cultures

(Sperber & Hirschfield, 2004). In contrast, others argue that the simi-

larities between music and speech are not unique, as they are also

shared with other cognitive mechanisms (Jackendoff, 2009). Attempts

at reconciling these opposing views propose that music and language

processing occur across a number of discrete modules, some of which

overlap, while others remain distinct (e.g., Peretz & Coltheart, 2003).

The surge in neuroimaging studies conducted over the last

decade that examined the neural correlates of speech and music pro-

cessing, has rekindled this debate, particularly focusing the question

on whether speech and music activate distinct or overlapping regions
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in the brain, especially within the auditory cortex. As shown by a

recent meta-analysis (Schirmer, Fox, & Grandjean, 2012), these studies

have provided substantial evidence for overlapping regions of activa-

tion, in response to both music and voice, within the superior tempo-

ral gyrus (STG), superior temporal sulcus (STS), and medial temporal

gyrus (MTG). However, a small but growing number of experiments,

some using newly developed, more sensitive acquisition and/or ana-

lytical approaches, have reported some degree of functional separabil-

ity of responses, with voice (including, but not limited, to speech)

engaging mainly an area along the STS (Belin, Zatorre, Lafaille, Ahad, &

Pike, 2000; Belin, Zatorre, & Ahad, 2002; Belin & Zatorre, 2003;

Fecteau, Armony, Joanette, & Belin, 2004; Kriegstein & Giraud, 2004;

Pernet et al., 2015), and music eliciting stronger responses in a smaller

cluster in the anterior STG (planum polare), often bilaterally, but more

pronounced on the right hemisphere (Leaver & Rauschecker, 2010;

Fedorenko, McDermott, Norman-Haignere, & Kanwisher, 2012;

Angulo-Perkins et al., 2014; Aubé, Angulo-Perkins, Peretz, Concha, &

Armony, 2015). Importantly, these findings were obtained with a vari-

ety of stimuli (e.g., Music: unfamiliar pop/rock music, instrumental

excerpts of piano, strings, woodwind, or brass; Voice: syllables, words,

connected speech, nonlinguistic vocalizations, varying languages; Con-

trols: scrambled music or voice, songbirds, animal sounds, nonvocal

human sounds, white noise, environmental, and mechanical sounds)

and paradigms (e.g., block and event-related designs). Moreover, these

results obtained using category-based univariate analyses were con-

firmed by a few others employing data-driven classification tech-

niques based on multivariate statistics (Norman-Haignere,

Kanwisher, & McDermott, 2015; Rogalsky, Rong, Saberi, & Hickok,

2011), as well as adaptation fMRI (Armony, Aubé, Angulo-Perkins,

Peretz, & Concha, 2015).

Although most of the studies previously described attempted to

control for the possible nonspecific effects of general acoustic charac-

teristics of the stimuli employed (e.g., duration, intensity, and fre-

quency), there are still important qualitative and quantitative

differences between instrumental music and voice, which could, in

principle, introduce confounds in the results obtained.

While it is impossible, and indeed undesirable (Leaver &

Rauschecker, 2010), to remove all possible acoustic differences

between music and speech (the same way it is not possible to do so

for vocal vs. nonvocal sounds, or face to nonface visual stimuli), it is

important to minimize them, leaving only those features that are

thought to be essential to each stimulus class. In this sense, lyrical

song as produced by the human voice in the absence of instruments,

or a capella, may constitute an ideal candidate as an intermediary

between music and speech (Schön et al. (2010)). Indeed, while singing

is undoubtedly a form of musical expression, its basic acoustic profile

is highly similar to that of the spoken voice. In fact, a “super-

expressive voice” theory of music has been put forward, suggesting

that music originated simply as an exaggeration of speech, accentuat-

ing vocal speed, intensity, and timbre, as a method of enhancing com-

munication and to ensure effective bonding (Juslin, 2001). The few

studies that directly compared brain responses to speech and singing

support, to some extent, this hypothesis. Schön et al. (2010) pre-

sented subjects with French tri-syllabic nouns either spoken or sung,

and observed that both conditions activated, as compared with pink

noise, similar clusters in the middle and superior temporal gyrus

bilaterally. The comparison of Singing > Speech revealed only small

clusters in those regions, leading the authors to conclude that very

similar networks are engaged when listening to spoken or sung words.

Callan et al. (2006) compared six well-known songs in spoken and

sung form and also found very similar activation patterns for both cat-

egories. They also reported greater activity for the singing than

speech condition in the right planum temporale. However, these stud-

ies did not include an instrumental music condition, so the question

remains as to whether there are brain regions that respond preferen-

tially to music, regardless of how it is expressed, either through voice

or instruments.

Another potential concern when conducting fMRI studies using

acoustic stimuli is the possible influence of scanner noise in the

observed responses. Although a large literature exists consistently

showing that auditory perception studies can be successfully con-

ducted using standard continuous acquisition sequences, it is still gen-

erally acknowledged that the use of sparse sampling protocols, or

“silent fMRI”—in which the sounds are presented during a silent

period, with volume acquisitions following the silence when the

hemodynamic response function is at its peak (Hall et al., 2014)—does

present advantages (as well as drawbacks, particularly in terms of

reduced statistical power; Nebel et al., 2005). For instance, studies

that have compared the two approaches have shown the recruitment

of larger networks using sparse sampling (Adank, 2012), as well as

greater activation in auditory regions (Gaab, Gabrieli, & Glover, 2006),

and a higher MR signal-to-noise ratio (Hall et al., 1999). Furthermore,

it has been suggested that speech perception in the presence of back-

ground noise requires the recruitment of additional cognitive

resources as to successfully understand what is being spoken (Manan,

Yusoff, Franz, & Mukari, 2013) and that it can impair other cognitive

processes, such as memory recall (Rabbit, 1968; Murphy, Craik, Li, &

Schneider, 2000). Moreover, noisy speech has been shown to elicit

stronger responses in several brain regions, including middle and supe-

rior temporal gyrus (Davis & Johnsrude, 2003). Because the majority

of fMRI studies of music perception employed continuous acquisition,

it remains unknown to what extent, if at all, scanner noise may have

affected the results obtained.

The goal of the present study was thus to provide a comprehen-

sive assessment of the brain responses to music, including both instru-

mental and vocal (singing) stimuli. We employed a large and diverse

set of unfamiliar short stimuli and controlled, either in the stimulus

selection or analysis, many of the basic acoustic parameters. Analysis

was conducted using complementary uni- and multivariate

approaches. We employed a multiband echo-planar imaging sequence,

in which the acceleration of data acquisition allowed us to achieve

both high spatial resolution and sampling rate (thus maximizing statis-

tical power). In addition, we conducted, in the same subjects, a short

experiment using a subset of the stimuli using the Interleaved Silent

Steady State (ISSS) sparse imaging acquisition protocol (Schwarzbauer,

Davis, Rodd, & Johnsrude, 2006), to investigate the possible con-

founding effects of scanner noise on the results.

We expected to replicate previous studies showing that instru-

mental music, when compared with speech, activates a bilateral region

in the anterior STG, particularly in the planum polare (PP) (Armony
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et al., 2015; Leaver & Rauschecker, 2010; Angulo-Perkins et al., 2014;

Fedorenko et al., 2012; Rogalsky et al., 2011), whereas speech would

elicit responses along the STS (Belin et al., 2000, 2002; Belin &

Zatorre, 2003; Fecteau et al., 2004; Kriegstein & Giraud, 2004; Pernet

et al., 2015). Critically, we hypothesized that vocal music (i.e., singing)

would represent an intermediate condition between these two.

Namely, when compared with music, singing should activate STS, but

when compared with speech, it should yield activations overlapping

with those associated with instrumental music within the PP.

2 | METHODS

2.1 | Participants and procedure

Twenty-four healthy volunteers (11 females, mean age = 25.5) with a

range of musical expertise (years of training: M = 4.2, SD = 4.73) par-

ticipated in the study. Participants had normal hearing and were right-

handed. All subjects were fluent in English. Eleven of them also spoke

another language, and nine spoke three languages. Overall, languages

understood by the participants included English (24), Finish, French

(11), German, Greek, Hindi, Italian (7), Malayalam, Mandarin (3), Per-

sian, Spanish, and Turkish.

The experiment consisted of three 8-min runs, two using a con-

tinuous multi-band sequence and one with an interleaved silent

steady state (ISSS) sequence (Schwarzbauer et al., 2006), described

below. Participants passively listened to auditory stimuli while watch-

ing nature scenes. Stimuli were presented using E-Prime 2.0

(Psychology Software Tools) and delivered binaurally from MRI-

compatible headphones (Model S14, Sensimetrics). A sound test was

conducted prior to each testing session to confirm that the acoustic

stimuli were audible in the presence of the background scanner noise

for the continuous acquisitions and not too loud for the sparse sam-

pling one. Functional images were acquired on a 3T Siemens TIM

TRIO MRI scanner with a 32-channel head coil. In addition to the

functional runs, a high-resolution 3D T1-weighted image (voxel size =

1 × 1 × 1 mm3) was acquired using a magnetization-prepared rapid

acquisition gradient echo (MPRAGE) sequence (TR = 2.3 s; TE = 3 ms,

192 slices) for anatomical co-registration and normalization.

2.2 | Stimuli

Auditory stimuli belonged to three categories:

2.2.1 | Instrumental music

An assortment of instrumental pieces were cut to produce 60 different

musical excerpts (duration: M = 1.49 s; SD = 0.13 s). The clips con-

sisted of strings, woodwinds, or percussion instruments (40 unique

instruments), each obtained from online database sources and from

Vieillard et al. (2008) and Aubé et al. (2015).

2.2.2 | Speech

A total of 60 different phrases spoken in 45 languages (ranging from

English, Spanish, and French to Baatonum, Gujarati, Mongolian, and

Yiddish) and one stimulus with no words (“baby talk”) produced by

speakers including children (n = 2) and adults (33 male), were obtained

from various online databases (duration: M = 1.51 s; SD = 0.22 s).

2.2.3 | Singing

Stimuli consisted of 60 different singing excerpt (duration: M = 1.51 s;

SD = 0.23 s), sung by one or several individuals of varying ages,

including male (n = 28) and female (n = 32), without instrumental

accompaniment (“a cappella”), sung in 19 different languages

(e.g., English, German, Arabic, Ilocano, Doabi, Hebrew) or without

words (n = 6), including song excerpts produced by amateur and pro-

fessional singers, lullabies, and religious chanting (e.g., Church choir

and Torah reading). About 61% of these were monophonic, 37%

homophonic, and 2% polyphonic.

All stimuli were monaural, but presented binaurally. The sounds

were resampled to 32 bits, at a sample rate of 44,100 Hz, and

adjusted for loudness by normalizing to the short-term loudness (STL)

maximum using the Moore and Glasberg Loudness model (Glasberg &

Moore, 2002), as implemented in the Loudness Toolbox on MATLAB.

Basic acoustic parameters for each of the categories, computed using

the MIRtoolbox (Lartillot, Toiviainen, & Eeorla, 2008), MATLAB scripts

(Ewender, Hoffmann, & Pfister, 2009) and the Praat Vocal Toolkit

(Boersma, 2002), are summarized in Table 1.

2.3 | fMRI acquisition and analysis

2.3.1 | Continuous acquisition

Each run consisted of 90 stimuli; 30 speech, 30 singing, and 30 instru-

mental music excerpts, which were presented in a pseudo-random

fully balanced order (equal number of first-order transitions between

categories), to remove any possible carry-over effects. Each stimulus

was presented only once and the stimulus subsets used in each run

were counterbalanced across subjects. The auditory stimuli were pre-

sented in a continuous design and were jittered using a brief ISI (dura-

tion: M = 2.49 s, SD = 0.20 s).

Functional images were acquired using a multiband accelerated

pulse sequence with a factor of 12 (Setsompop et al., 2012). Eight

hundred volumes (72 slices per volume, interleaved acquisition;

FOV = 208 × 208 mm2, matrix = 104 × 104, voxel size = 2 × 2 ×

2 mm3; TR = 529 ms; TE = 35 ms) were acquired. The first 10 scans

of the run were discarded due to T1 saturation. Image pre-processing

was conducted using SPM12 (Wellcome Department of Imaging Neu-

roscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm). Functional

images were spatially realigned to the first volume and normalized to

the MNI152 template. The images were then smoothed using a 6 mm

FWHM isotropic Gaussian kernel.

2.3.2 | Univariate analysis

Statistical analysis was performed for each subject using a univariate

general linear model (GLM) in which the categories of interest

(Instrumental Music, Singing, and Speech) were entered as boxcars of

length equal to the stimulus duration, convolved with the canonical

hemodynamic response function. Subject-specific contrast instrumen-

tal music versus speech, instrumental music versus singing, and sing-

ing versus speech, were then taken to a second level, repeated-

measures ANOVA. Statistical significance was determined using a
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voxel threshold of p = .001, with a cluster-based familywise error rate

(FWE) correction for multiple comparisons of p < .05 (k = 90) as

implemented in AFNI’s algorithm 3dClustSim (AFNI version 16.3.05).

To identify regions commonly activated for different categories

(e.g., Instruments and Singing vs. Speech), we performed conjunction

analyses (minimum statistic compared with the conjunction null;

Nichols, Brett, Andersson, Wager, & Poline, 2005).

In addition, we conducted a stimulus-based analysis. For each

subject, each of the 180 stimuli was entered as a separate covariate in

a standard GLM. The corresponding stimulus-specific parameter esti-

mates were then averaged across subjects. These estimates were used

for post-hoc regression analyses of the significant clusters including

the acoustic parameters shown in Table 1, as well as for the multivari-

ate analysis described in the following paragraph.

2.3.3 | Multivariate analysis

The categorical univariate analyses were complemented by a simple

stimulus-based multivariate approach in which the parameter estimate

images obtained in the stimulus-based analysis described in the previ-

ous paragraph were submitted to an Independent Component Analy-

sis (ICA). We restricted the observations to auditory-responsive

voxels as identified by an omnibus F-test in the univariate group anal-

ysis. Furthermore, Principal Component Analysis (PCA) was first

applied on the data to reduce the dimensionality of the signal to the

subspace spanned by the first four components, which explained 87%

of the total variance. The contributions of each stimulus to each of

the independent components obtained (weights) were then submitted

to independent-sample t-tests (Bonferroni-corrected for multiple

tests) to assess whether there were significant differences between

categories (Speech, Instrumental Music, and Singing). Finally, the

weights were submitted to a multiclass, error-correcting output codes

(ECOC) model (a generalization of support-vector machine classifica-

tion for more than two classes; Dietterich & Bakiri, 1995), implemen-

ted in MATLAB, to determine if the model could classify individual

stimuli as belonging to their a priori category with above-chance

accuracy.

2.4 | Sparse acquisition

Functional images were acquired using the ISSS sequence

(Schwarzbauer et al., 2006) (FOV = 224 × 224 mm2, matrix = 104 ×

104, voxel size = 2 × 2 × 2 mm3; TR = 2,383 ms; TE = 30 ms), with

25 slices, parallel to the Sylvian fissure, covering the entire of auditory

cortex. Seven TRs formed a single epoch, in which three of the vol-

umes were acquired during the silent dummy block (no data acquisi-

tion), followed by four volumes during the acquisition block. Auditory

stimuli were presented during the silent periods in a short block of

four stimuli belonging to the same category (Instrumental Music or

Speech) with a mean duration of 7.15 s and their onset relative to the

beginning of the dummy block was jittered (latency: 0.617 � 0.403 s).

Because of time limitations, due to the longer time required to

acquired images, only two categories were presented, Instrumental

Music and Speech. A total of 48 stimuli per category, taken from the

stimulus pool described above, were presented in 12 blocks, their

order within and between blocks, pseudo-randomized, and counterba-

lanced across participants. In addition, there were six blocks of silence,

which served for baseline estimation.

Data preprocessing was carried out as in the continuous acquisi-

tion (see above) and analysis was performed using a finite impulse

response (FIR) model, in the context of the general linear model, in

which each of the four acquisition volumes for the two sound types

was entered as a separate category (i.e., eight in total). Dummy vol-

umes were created using replications of the mean EPI image, to create

a continuous timescale in the design matrix. The dummy scans were

not included as observations in the model, to avoid skewing the

degrees of freedom (Peelle, 2014). Subject-specific estimates for the

contrast for Instrumental Music minus Speech were calculated and

taken to a second level, one-sample t-test. Statistical significance was

determined as in the previous analysis. Analyses were also conducted

using a hrf model, yielding similar results (not shown).

TABLE 1 Mean and standard deviation values of acoustic features

for each sound category

Audio features Music Singing Speech

Articulation (a.u.) .32 (.21)a .27 (.15)a .44 (.09)a

Root mean square (dB) .13 (.05) .16 (.04)b .13 (.04)

Tempo (bpm) 125 (30) 137 (29) 126 (30)

Spectral centroid (kHz) 2.3 (1.5) 2.4 (1.0) 2.1 (1.0)

Spectral brightness (>1.5 kHz) .44 (.26) .42 (.16) .37 (.15)

Spectral spread (Hz) 5.8 (3.3) 6.0 (2.6) 5.1 (1.6)

Spectral Skewness (a.u.) .21 (.20)* .37 (.36)* .30 (.28)

Spectral kurtosis (a.u) .73 (1.09) 1.5 (3.0) .86 (1.43)

Spectral roll off 95th
percentile (kHz)

4.2 (2.7) 5.0 (2.3) 4.3 (2.0)

Spectral Spectentropy (bits) .76 (.08)b .80 (.05) .81 (.04)

Spectral flatness .05 (.08) .06 (.05)* .04 (.03)*

Spectral irregularity .78 (.32) .95 (.38)* .67 (.37)*

Zerocross (s−1) 1,335
(1,206)

97(517) 1,137
(548)

Low energy ratio .54 (.10) .48 (.08)b .52 (.07)

Key clarity (a.u.) 6.8 (3.3) 6.0 (3.3) 7.1 (3.4)

Tonal mode (minor-major, a.u.) −.02 (.12) −.02 (.10) −.02 (.08)

Pulse clarity (a.u.) .28 (.17)b .18 (.09) .23 (.08)

Mean fundamental frequency
(F0)

275 (138) 273 (90) 185 (56)b

Std. Dev. Fundamental
frequency (F0)

47.2
(37.9)b

31.6
(24.9)

29.6
(15.4)

Minimum fundamental
frequency (F0)

204 (109) 217 (79) 134 (45)b

Maximum fundamental
frequency (F0)

353 (169) 327
(111)

246 (78)b

Fraction of locally unvoiced
frames (%)

10.6 (13.3) 7.6 (9.1) 23.7
(13.1)b

Jitter (local) (%) 2.24 (2.57) 1.43
(1.19)b

2.25 (.71)

Shimmer (local) (%) 12.7 (6.8)b 10.1 (5.1) 10.2 (3.2)

Mean HNR 11.4 (8.0) 13.7 (5.4) 11.4 (3.1)

a.u. = arbitrary units; bpm = beats per minute. Values were calculated with
MIRToolbox, except for those related to the Fundamental Frequency
(http://www.tik.ee.ethz.ch/~spr/f0_detection) and the last four features
(Praat).
a All significantly different.
b Significantly different from the other two.
*Significantly different from each other (p < .05, Bonferroni corrected).
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To compare the results between the continuous and sparse acqui-

sitions, conjunction analyses were conducted for each contrast of

interest (p = .01). Additionally, we tested whether there was a correla-

tion in the magnitude of the responses between acquisitions, by

entering the corresponding cluster-averaged, subject-specific contrast

estimates into a linear regression analysis.

3 | RESULTS

3.1 | Continuous acquisition

3.1.1 | Univariate analysis

Coordinates, z-scores, and cluster extents for all the significant activa-

tions obtained in the univariate analysis are reported in Table 2. The

contrasts Instruments minus Speech yielded significant clusters in the

right planum temporale (PT) and bilaterally in the planum polare

(PP) (Figure 1a). Singing minus Speech yielded significant clusters

bilaterally in the PP and in the right PT. Importantly, these clusters

partially overlapped with those obtained in the preceding contrast

(Figure 1b). This common activation for musical stimuli in general was

statistically confirmed through a conjunction analysis ([Instruments −

Speech] and [Singing − Speech]), which yielded significant activations

in the right PT and bilateral regions in the PP (Figure 1a,b). Interest-

ingly, in the more anterior regions of PP, Singing elicited stronger

responses than both Speech and Instruments, whereas in the more

posterior areas activation for Instruments was larger than for Speech

and Singing (Figure 1b). Moreover, responses in this latter cluster, par-

ticularly in the left hemisphere, significantly correlated with stimuli’s

pulse clarity values (z = 3.57, p < .001).

Speech vs. Instrumental Music revealed significant bilateral activ-

ity in in voice-preferred areas within the superior temporal sulcus

(STS), superior temporal gyrus (STG), and medial temporal gyrus

(MTG) (Figure 2, Top). Largely overlapping activations were obtained

for the contrast Singing vs. Instruments, confirmed statistically using a

conjunction analysis (Figure 2). Finally, the contrast Speech versus

Singing also yielded significant clusters bilaterally in the STS, STG, and

MTG (Table 2).

To assess whether the responses of voxels activated in the con-

trasts [Instruments − Speech] and [Singing − Speech] were modulated

by simple acoustic parameters, we extracted the stimulus-specific

parameter estimates for each of the three clusters reported in Table 1

and entered them (one at a time), as an additional covariate in the

analysis. None of the acoustic features significantly correlated with

the BOLD parameter estimates in the music-preferred clusters (but

see above for a correlation with pulse clarity in a subcluster of the

contrast Instruments minus Singing and Speech).

In order to evaluate the robustness of the group-level activations

of Music (Instruments and Singing) versus Speech, we tested for the

presence of significant clusters in these contrasts for each subject

separately, using an anatomical mask corresponding to the planum

polare for each hemisphere, obtained from Harvard–Oxford Probabi-

listic Anatomical Atlas, as in our previous study (Angulo-Perkins et al.,

2014). For the contrast Instruments minus Speech, 88% and 75% of

subjects had significant clusters on the right and left hemispheres,

respectively, using a significance threshold of p = .01 (uncorrected),

and 75% and 63% with a more stringent threshold of p = .001. The

proportion of subjects with significant clusters for the contrast Singing

minus Speech was 83% and 75% for p = .01, and 63% and 58% for

p = .001, for the right and left hemispheres, respectively. Figure 3

shows a prevalence map of the voxels, across the whole brain, that

showed significant activation at the single-subject level (p = .01), for

these two contrasts. Consistent with the group analysis (Figure 1), the

individual clusters associated with Singing were slightly more anterior

than those for Instrumental music.

3.1.2 | Multivariate analysis

The first ICA component (Figure 4a) included almost all voxels in the

mask, representing, as expected, the general auditory responses eli-

cited by all stimuli. There was a significant difference effect of cate-

gory on the associated weights (F[2,179] = 4.867, p = .009), reflecting

a smaller activation for Instruments compared with Speech (p = .01,

Bonferroni corrected) and Singing (p = .06, Bonferroni corrected), with

no difference between the two vocal sounds (p > .9). These results

are in agreement with those from the univariate analysis.

The second ICA exhibited a bipolar pattern, with positive and

negative subcomponents that largely overlapped with the music- and

voice-preferred areas, respectively, obtained in the univariate con-

junction analyses (Figure 1). Moreover, a significant category effect

was observed for the corresponding weights, with all categories signif-

icantly differing from each other (all p’s < .001). Interestingly, the scat-

terplot of the weights for each stimulus (Figure 4b) showed almost no

overlap between Instruments (positive values) and Speech (negative

values), whereas singing fell in between the two, consistent with the

shared activation pattern of this category with both instrumental

music and spoken voice. This separation among categories was con-

firmed through a multiclass, ECOC model, which yielded an overall

classification accuracy was 68% (leave-one-out cross-validation,

chance level: 33%; p < .0001). Similar results were obtained when

analyzing only Speech and Singing, confirming that the results were

not due to simple acoustic differences between instruments and

human voice.

3.2 | Sparse acquisition

The contrast Instrumental Music minus Speech yielded significant

clusters bilaterally in the PP and the right PT. Significant clusters in

the bilateral STS, STG, and MTG were obtained for the contrast

Speech minus Instrumental Music (Figure 5 and Table 2). Importantly,

no additional activation clusters were observed for either of the com-

parisons when using the “silent” sparse sampling protocol. The loca-

tion of the clusters is very similar to what we found with the

continuous acquisition in the same group of subjects. Furthermore,

there was a significant correlation of the subject-specific, cluster-

averaged parameter estimates for the contrast Instrumental Music

minus Speech between both runs for each of the three main clusters

(0.44 < r < .56, p’s < .05).

Examination of the contrasts at single-subject level, using the

same approach as described for the continuous acquisition, revealed

that 79% and 88% of the subjects had significant clusters on the left
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and right hemispheres, respectively, using a significance threshold of

p = .01 (uncorrected), and 58% and 75% with a threshold of p = .001.

4 | DISCUSSION

The aim of this study was to identify the brain responses to vocal and

musical stimuli through the use of a high spatial- and temporal-

resolution fMRI sequence. By using a stimulus set that varied widely

in most of the basic acoustic measures and, critically, by including

both vocal and instrumental musical excerpts, we were able to mini-

mize potential confounding effects caused by differences in physical

properties between categories. Moreover, to rule out any possible

influence of scanner noise on the observed activations, we also

employed a “silent” (i.e., sparse sampling) acquisition sequence with a

subset of the original stimuli, in the same subjects. Finally, results

obtained with a univariate categorical analysis were confirmed by a

stimulus-based, multivariate approach.

4.1 | Cortical responses to voice

When compared with musical instruments, human voice, either spo-

ken or sung, elicited significant activations in clusters along the STS in

both hemispheres. These results confirm and extend many reports in

the literature showing that this region preferentially responds to the

human voice (Belin et al., 2000, 2002; Belin & Zatorre, 2003; Fecteau

et al., 2004; Kriegstein & Giraud, 2004; Pernet et al., 2015), with and

without linguistic content. As the vocal stimuli included speech and

TABLE 2 Significant activations associated with contrasts of interest at the group level

Anatomical location Left Right
Z-score
(peak voxel) KE

x y z x y z

Continuous multiband sequence

Instrumental music > speech

STG (posterior) 66 −28 12 5.99 155

STG (anterior) 46 −6 −6 5.88 241

STG (anterior) −48 −6 −4 5.37 162

Singing > speech

STG (anterior) 50 4 −8 6.29 319

STG (posterior) 66 −26 10 5.74 213

STG (anterior) −48 0 −6 7.43 286

[Instrumental music and singing] > speech

STG (posterior) 66 −26 10 5.74 123

STG (anterior) 48 4 −8 5.74 154

STG (anterior) −48 −6 −4 5.37 85

Speech > instrumental music

STS/STG, MTG 64 −8 −4 12.63 1,570

STG/STS, MTG −62 −12 0 15.14 2008

Singing > instrumental music

STS/STG, MTG 62 −20 −2 11.04 1,440

STS/STG, MTG −60 −12 2 12.31 1835

[Speech and singing] > instrumental music

STS/STG, MTG 62 −20 −2 11.04 1,250

STS/STG, MTG −60 −12 1 12.31 1,612

Speech > singing

STS/STG, MTG 64 −8 −4 7.22 845

STS/STG, MTG −60 −22 −2 9.36 1,239

Interleaved silent steady state (ISSS) sequence

Instrumental music > speech

STG (posterior) 48 −32 24 4.39 238

STG (anterior) 42 −12 −10 4.88 344

STG (anterior) −48 −6 −0 4.79 253

Speech > instrumental music

STS/STG, MTG 56 −28 −2 7.54 863

STG/STS, MTG −64 −28 4 8.01 1,238

STG = superior temporal gyrus; STS = superior temporal sulcus; MTG = medial temporal gyrus.
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songs in different languages (most of which were not understood by

the participants) as well as no-words singing, the responses observed

in this area are likely to be related to the acoustic properties of the

human voice, rather than reflecting semantic processing. This is also

consistent with previous studies showing that this region responds

significantly to human nonlinguisitic vocalizations (Belin et al., 2000,

2002; Fecteau et al., 2004). However, in this and previous studies,

speech always elicited the strongest response, in both hemispheres.

Importantly, and as reported before, while these clusters exhibited a

bias, in terms of magnitude, for human voice, they also responded to

nonvocal sounds, confirming that the so-called vocal temporal area

(VTA) should be considered as a “voice-preferring” rather than as a

“voice-selective” region (Belin et al., 2000).

4.2 | Cortical responses to music

Conversely, contrasted to speech, music—either in instrumental or

vocal form—yielded significant clusters in the anterior planum polare

bilaterally and in the right planum temporale, in agreement with previ-

ous studies employing different stimulus sets and analyses approaches

(Patterson, Uppenkamp, Johnsrude, & Griffiths, 2002; Leaver &

Rauschecker, 2010; Angulo-Perkins et al., 2014; Fedorenko et al.,

2012; Rogalsky et al., 2011; Norman-Haignere et al., 2015; Aubé

et al., 2015). In these previous studies most, when not all, musical

stimuli contained an instrumental component, thus leaving open the

question of whether these regions encode instrumental timbre

(Leaver & Rauschecker, 2010), or music in general, including singing.

FIGURE 1 (a) 2D and (b) 3D renderings of the clusters of significant activations for the contrasts [singing − speech] (red), [instrumental music −

speech] (green), as well as their conjunction (white). Threshold: p = .001 (corrected for multiple comparisons at the cluster level). Group average
of the responses for each condition in each cluster (left and right hemispheres), using unsmoothed data. In: Instrumental music; Si: Singing; Sp:
Speech; A.U.: arbitrary units. *significant difference (p < .001) between singing and instrumental music. In all cases, singing and instrumental

music elicited significantly larger responses than speech (p < .001) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 2D (Left) and 3D (Right) renderings of the clusters of significant activations for the contrasts [singing > instrumental music] (red),

[speech > instrumental music] (green), as well as their conjunction (white). Threshold: p = .001 (corrected for multiple comparisons at the cluster
level) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Prevalence maps showing the percentage of subject-specific significant activations at each voxel for the contrasts [singing > speech]

(red scale) and [instrumental music > speech] (green scale). Clusters for singing were significantly more anterior (LH: p = .008; RH: p = .02) and
lateral (LH: p = .03; RH: p = .003) than those for instrumental music [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 (a) First two components obtained in the stimulus-specific ICA. In the second component, red and green represent positive and

negative values, respectively. (b) Scatterplots of the stimulus-specific eigenvalues corresponding to the first two ICA components. Each cross
represents one stimulus: Instrumental music (red), singing (blue), and speech (green). Curves correspond to the minimum volume ellipsoid that
covers all points of each category [Color figure can be viewed at wileyonlinelibrary.com]
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Our conjunction analysis directly answers this question, confirming

that clusters within these regions respond more strongly to both

instrumental and vocal music than speech, with no significant differ-

ences between the first two categories. Moreover, these results also

help address the often-raised concern about the possible confounding

effects due to differences in acoustic parameters between instrumen-

tal music and voice. Indeed, because of the acoustic similarities

between spoken and sung vocal expressions, and the substantial dif-

ferences between the latter and musical instruments (ranging from

drums to guitars to xylophones), it is highly unlikely that these activa-

tions simply reflect differences in basic acoustic features among cate-

gories. Instead, these areas seem to encode a higher-order feature

(yet, obviously, still based on the physical characteristics of the stimuli)

that is shared among different forms of musical expression, more than

with other complex, social stimuli such as speech (e.g., melody

vs. sentence-level intonation; Zatorre & Baum, 2012). Such a conclu-

sion is also supported by the lack of correlation of the responses with

any of the tested basic acoustic parameters, also shown previously by

Leaver and Rauschecker (2010). Finally, the almost identical results

obtained with the sparse-sampling sequence, rules out potential dif-

ferential effects of scanner noise on voice and music (see below for

further discussion of these methodological issues).

As could be expected, the overlap of the instrumental and vocal

music versus speech clusters was not complete. Specifically, more

posterior regions of PP responded more strongly to instrumental

music than both speech and singing. Interestingly, this cluster, particu-

larly in the left hemisphere, significantly correlated with pulse clarity,

in agreement with our previous study (Angulo-Perkins et al., 2014).

This acoustic parameter measures the intrinsic rhythm of a stimulus,

arguably one of the defining characteristics of (instrumental) music,

and appears to be involved in musical genre recognition specifically.

Pulse clarity improves the ability to discriminate between genres,

which differ in how audible the main pulsation is, over the texture of

the base rhythm (Lartillot, Eerola, Toiviainen, & Fornari, 2008). As the

key organizing structure of music, rhythm is fundamental for melody

and harmony to exist (Thaut, Trimarchi, & Parsons, 2014). In contrast,

the more anterior portions of PP were activated significantly more to

singing than to either speech or instruments. In this case, we failed to

identify one, or a linear combination of, acoustic parameters that cor-

related with activity in this region, including factors previously identi-

fied as differentiating singing from speech, such as duration,

fundamental frequency floor, and vocal intensity (Livingstone, Peck, &

Russo, 2013). One possible explanation for this null result is that the

transition from speech to song involves a more complex, nonlinear

weighting of several acoustic features (Saitou, Tsuji, Unoki, & Akagi,

2004; Saitou, Goto, Unoki, & Akagi, 2007; Livingstone, Peck & Russo,

2013). Overall, the brief duration of the stimuli did not allow for the

computation of additional information about the acoustic features to

directly explore this question. Additionally, no effects were observed

based on the number of voices or melody lines on the magnitude or

location of the music-related activations, again, likely due to the small

variability in these features present in our stimuli. Thus, longer stimuli,

with discrete categorical differences as to properly analyze the acous-

tic attributes, may lead to a tangible conceptualization of music, and

thus a worthwhile pursuit in future studies. Another, complementary

approach could be to use stimuli that have been artificially manipu-

lated, in the line of the work of Saitou et al. (2004, 2007) to obtain the

necessary independent variability of these candidate parameters to

attain the statistical power required for detecting small effects, and

potentially shedding light on this question.

The notion that “music-preferred” respond to a complex configu-

ration of varying acoustic components bears some parallels with

observations made in the literature regarding the processing of visual

social stimuli. For example, headless bodies have been shown to elicit

a greater response in body-selective areas of the brain, when pre-

sented to participants as a whole configured body, rather than as

separate segregated parts appearing together, but not in full form

(Brandman & Yovel, 2016). It is most likely that processing musicality

reflects this pattern, in which each acoustic component is required in

a particular arrangement, as to induce this response. As suggested by

the development of the speech-to-singing synthesis system (Saitou

et al., 2004, 2007), it is also likely that varying weights of each acous-

tic modification must be precise for the musical perception to be

achieved. This can be related to the observed saliency-hierarchy in

the fusiform face area (FFA) in response to specific facial features. Lai,

Pancaroglu, Oruc, Barton, and Davies-Thomson (2014)’s fMRI-

adaptation study identified that different parts of the face (e.g., nose,

mouth, and eyes) contribute varying amounts to the overall neural sig-

nal in face-sensitive regions of the brain, such that greater response

sensitivity is present for the upper half of the face, and more specifi-

cally, the eyes. The origin, and specificity, of category-selective, or

preferred, brain regions has also been extensively studied, and

debated, in the visual domain. In particular, an alternative hypothesis

to the view that face selectivity, of preference, in the FFA is hard-

FIGURE 5 Clusters of significant activations for the contrasts

[instrumental music > speech] (red) and [speech > instrumental music]
(green) obtained with the sparse sampling acquisition. Threshold:
p = .001 (corrected for multiple comparisons at the cluster level)
[Color figure can be viewed at wileyonlinelibrary.com]
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wired (Kanwisher, McDermott, & Chun, 1997), has been put forward,

suggesting that, rather than this region being face-sensitive, it may

instead be better attributed as being an area of visual expertise, func-

tioning to process and decipher highly complex visual stimuli

(Gauthier, Skudlarski, Gore, & Anderson, 2000; Bilalić, 2016). Accord-

ing to this view, its preference for face stimuli reflects the fact that, as

social individuals, we can all be considered experts of faces. Translat-

ing this idea to the auditory domain, it may be that as surrounded by

music since birth, we have been able to fine-tune our perception of

the particular “music algorithm,” and now rely on this region of the

brain to respond when needing to decipher more discrete changes

within the musical framework. Some preliminary support for this idea

comes from studies comparing responses to music between musicians

and nonmusicians (Angulo-Perkins et al., 2014; Ohnishi et al., 2001),

although further studies including musical expertise as a factor are still

needed to fully test this hypothesis and better characterize the neural

representation of musical and vocal stimuli in the brain.

4.3 | Methodological considerations

The location and extent of the clusters of significant activation in the

contrasts Instrumental Music versus Speech (and vice versa) obtained

with the continuous and sparse acquisitions were very similar, as

shown in Figures 1–2, and 4. The concordance in results between the

two sequences is in agreement with previous studies (e.g., Woods

et al., 2009; Hall et al., 2014). Interestingly, we also found that the

magnitudes of the responses for both runs were significantly corre-

lated across subjects. Thus, it is very unlikely that differential effects

of scanner noise on speech and music could have influenced the over-

all pattern of the observed activations. In turn, this provides further

support for the use of continuous sampling sequences to study pro-

cessing of complex auditory information, particularly when focusing

on regions outside primary auditory cortex (Gaab et al., 2006). How-

ever, it should be noted that the goal of our study was not to provide

a comprehensive quantitative comparisons between sequences, either

in terms of how different acoustic parameters may be affected or, par-

ticularly, possible differences in their statistical power, as has been

reported in some studies (Adank, 2012; Gaab et al., 2006; Hall

et al., 1999).

Likewise, the activation patterns obtained with the standard uni-

variate categorical ANOVA were very similar to those yielded by a

stimulus-based multivariate ICA. This increases our confidence that

the findings are not driven by a few high-leverage distinct stimuli in

each category. Moreover, the distribution of the ICA stimulus-specific

coefficients supports the hypothesis that the activation patterns rep-

resent the acoustic processing of the stimuli, rather than their poten-

tial categorization performed (implicitly) by participants. Indeed, the

singing stimuli whose coefficients were closest to instrumental music

(i.e., most positive) were chorales, whereas those with most negative

values (i.e., most similar to those from speech) included amateur sing-

ing, lullabies, and a melodic Torah reading. These findings suggest the

presence of a gradient from speech to music, which may be depen-

dent on the clarity of the speech in the stimulus, irrespective of com-

prehension. The distribution of clusters responding preferentially to

one or more of the different stimulus categories, as show in Figure 1b,

aligns with the model proposed by Peretz and Coltheart (2003), sug-

gesting that numerous discrete modules are involved in music and lan-

guage processing, some of which overlap, while others appear

independent.

Our paradigm was also designed to minimize other potential con-

founding effects, such as stimulus expectation, by equalizing the num-

ber of stimuli in each of the three categories and all first-order

transition probabilities, as well as counterbalancing, across subjects,

the specific order of stimuli within and between runs. While there was

no explicit task for the participants to perform, we cannot exclude the

possibility that some of the participants performed some sort of stim-

ulus categorization (although this was not reported in the debriefing

following the experiment). Nonetheless, we believe our findings are

unlikely to be purely the result of such putative cognitive task, as

mentioned above. Moreover, a recent meta-analysis of examining the

role of attention on processing of auditory stimuli, including voice,

observed that no additional areas in auditory cortex were recruited

in active, compared with passive, listening conditions (Alho, Rinne,

Herron, and Woods, 2014).

5 | CONCLUSIONS

Different regions in the temporal lobe responded preferentially to

vocal and musical stimuli. These included the superior temporal sulcus

and gyrus for the former, and the planum polare and temporale for

the latter. Consistent with its having both vocal and musical proper-

ties, singing recruited all these areas. Importantly, the results were

obtained with a large and varied set of stimuli, as well as different

acquisition sequences and analysis approaches. Taken together, these

findings provide further support for a hierarchical processing of com-

plex social acoustic stimuli along the temporal lobes, similar to what

has been reported for the visual modality.
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